13 research outputs found

    Insights from Transcriptomics: CD163+ Profibrotic Lung Macrophages in COVID-19.

    No full text
    Coronavirus disease (COVID-19) begins with upper airway symptoms but proceeds in a significant proportion of patients to life-threatening infection of the lower respiratory tract, where an exuberant inflammatory response, edema, and adverse parenchymal remodeling impair gas exchange. Respiratory failure is caused initially by flooding of the airspaces with plasma exudate, sloughed epithelium, and inflammatory cells. For many patients with COVID-19, this acute phase has been observed to give way to a prolonged course of acute respiratory distress syndrome, and a significant proportion of patients go on to develop fibroproliferative remodeling of the lung parenchyma, which lengthens the duration of respiratory impairment and mechanical ventilation. Monocyte-derived macrophages have previously been implicated in the fibrotic phase of lung injury in multiple models. From several recent studies that used single-cell genomic techniques, a profile of the transcriptomic state of COVID-19 lung macrophages has emerged. Linkages have been made between these macrophages, which are monocyte-derived and CD163(+), and profibrotic macrophages found in other contexts, including animal models of fibrosis and idiopathic pulmonary fibrosis. Here, emerging concepts of macrophage profibrotic function in COVID-19 are highlighted with a focus on gaps in knowledge to be addressed by future research

    Molecular programs of fibrotic change in aging human lung.

    No full text
    Lung fibrosis is increasingly detected with aging and has been associated with poor outcomes in acute lung injury or infection. However, the molecular programs driving this pro-fibrotic evolution are unclear. Here we profile distal lung samples from healthy human donors across the lifespan. Gene expression profiling by bulk RNAseq reveals both increasing cellular senescence and pro-fibrotic pathway activation with age. Quantitation of telomere length shows progressive shortening with age, which is associated with DNA damage foci and cellular senescence. Cell type deconvolution analysis of the RNAseq data indicates a progressive loss of lung epithelial cells and an increasing proportion of fibroblasts with age. Consistent with this pro-fibrotic profile, second harmonic imaging of aged lungs demonstrates increased density of interstitial collagen as well as decreased alveolar expansion and surfactant secretion. In this work, we reveal the transcriptional and structural features of fibrosis and associated functional impairment in normal lung aging

    IQGAP1-dependent scaffold suppresses RhoA and inhibits airway smooth muscle contraction

    No full text
    The intracellular scaffold protein IQGAP1 supports protein complexes in conjunction with numerous binding partners involved in multiple cellular processes. Here, we determined that IQGAP1 modulates airway smooth muscle contractility. Compared with WT controls, at baseline as well as after immune sensitization and challenge, Iqgap1(–/–) mice had higher airway responsiveness. Tracheal rings from Iqgap1(–/–) mice generated greater agonist-induced contractile force, even after removal of the epithelium. RhoA, a regulator of airway smooth muscle contractility, was activated in airway smooth muscle lysates from Iqgap1(–/–) mice. Likewise, knockdown of IQGAP1 in primary human airway smooth muscle cells increased RhoA activity. Immunoprecipitation studies indicated that IQGAP1 binds to both RhoA and p190A-RhoGAP, a GTPase-activating protein that normally inhibits RhoA activation. Proximity ligation assays in primary airway human smooth muscle cells and mouse tracheal sections revealed colocalization of p190A-RhoGAP and RhoA; however, these proteins did not colocalize in IQGAP1 knockdown cells or in Iqgap1(–/–) trachea. Compared with healthy controls, human subjects with asthma had decreased IQGAP1 expression in airway biopsies. Together, these data demonstrate that IQGAP1 acts as a scaffold that colocalizes p190A-RhoGAP and RhoA, inactivating RhoA and suppressing airway smooth muscle contraction. Furthermore, our results suggest that IQGAP1 has the potential to modulate airway contraction severity in acute asthma
    corecore